Ray Casting against General Convex Objects
with Application to Continuous Collision
Detection

GINO VAN DEN BERGEN

Playlogic Game Factory
Breda, Netherlands
gino@acm.org

June 15, 2004

Abstract

This paper presents anew algorithm for computing the hit point and nor-
mal of aray and agenera convex object. The algorithm is loosely based on
the the Gilbert-Johnson-Keerthi algorithm for computing the distance be-
tween convex objects in the sense that it is applicable to the same family
of convex objects and uses the same subalgorithm for computing the clos-
est point of asimplex. Since this family of convex objects includes objects
constructed by Minkowski addition, this algorithm can be used for finding
the earliest time two objects that move at a constant linear velocity comein
contact of one another. In this way, this ray-casting algorithm is applicable
to asimplified form of continuous collision detection.

1 Introduction

The Gilbert-Johnson-Keerthi distance algorithm (GJK) is an iterative method for
computing the distance between convex objects[6]. The attractivenessof GJK lies
in its simplicity, which makes it fairly easy to implement, and its applicability to
alarge family of convex objects. Thisfamily of convex objects includes common
shape primitives, such as spheres, boxes, and cylinders, as well as convex hulls

and Minkowski sums of convex objects. GJK is used extensively in collision
detection [11]; however, up until now, it has been used mostly for static collision
tests at discretely sampled time steps.

A problem that occurs when performing collision detection in thisway is that
collisions of fast moving objects, such as bullets fired from a gun, may be de-
tected too late or not at all. Thistemporal-aliasing effect can be reduced by taking
smaller time steps, however, the added computational cost of running your simu-
lations at a higher frequency is often too high to make such an approach feasible.

This suggeststhat for fast moving objects we need to solve the collision detec-
tion problem as an intersection test in continuous four-dimensional space (space-
time). The object placements in between two sampled instances of time are not
known but can be obtained by interpolating the sampled placements. The four-
dimensional objects that we test for intersection are the result of extruding the
three-dimensional objects along their interpolated placements over the time inter-
val. Solutions to the four-dimensional intersection detection problem have been
presented for arestricted class of objects and motions[1, 2, 3, 7, 9, 4, 8]. How-
ever, in many common cases, the four-dimensional object that is the extrusion of
athree-dimensional object in motion is often geometrically too complex to make
a four-dimensional intersection test at interactive rates computationally feasible.
For instance, it ishard to test the space-time extrusion of aspinning object, such as
apropellor or afan, for intersection with the extrusion of another moving object.

Often, we can get away with the following simplified four-dimensional in-
tersection test. When the angular velocity of the moving objectsis low, that is,
orientations do not change a lot in-between frames, then a good approximation
of the trgjectory of such objects can be obtained by changing the orientations in-
stantaneous at fixed time steps. Thus we only interpolate the positions of the
objects in-between frames. For such trgjectories, the time of collision, the point
of contact, and a contact normal can be computed by performing aray cast on the
configuration space obstac{€S0) of the objects. The CSO of two objects A and
B isthe set of all vector differences of a point in A and a point in B. The con-
tact point corresponds to the point where the ray enters the CSO, and the contact
normal isthe normal to the boundary of the CSO at this point. Figure 1 shows an
example of theray test for abox and a moving sphere.

For many pairs of shape types, the CSO’s shape can not be represented explic-
itly in a simple way. However, the ray cast agorithm we propose in this paper
does not require an explicit representation of the CSO. As GJK, it uses a support
mapping to read the geometry of the object, and istherefore applicableto the same
family of objects.

Figure 1. Computing acontact point (open dot) and contact normal (arrow) of box
and amoving sphere by performing aray test on the CSO of the objects.

The rest of this paper is organized as follows. In Section 2, we present afirst
iterative method for performing ray casts on general convex objects. This algo-
rithmisan initial step towardsthe GJK-based ray cast presented in Section 4. The
first method has little practical value. Its main purpose is to explain the concepts
and help us prove certain properties of the GJK-based method. Since the latter
method relies heavily on concepts used in GJK, we present an overview of the
GJK agorithmin Section 3.

2 A First Solution

Let for apoint s and vector r, theray R be given by
R={s+Ar:\>0}.

The points s is the source and the vector r isthe directionof the ray. A ray cast
of R onto an object C' is a query that returns the smallest A > 0 for which the
point x = s 4+ Ar iscontained in C'. This parameter is denoted by Ay, and the
corresponding point x is called the hit spot If the source is not contained in C,
thus A, > 0, then the hit spot must be a point on the boundary of C'. Inthat case,
we can define anormal at the hit point.

A non-zero vector n isanormalat a point p on the boundary of object C' if

n-(x—p)<0,foralxecdC.

3

A normal existsfor al pointson the boundary aslong as C' is convex. For agiven
point p on the boundary, a normal at p may not necessarily be unique. Normals
that differ only in magnitude are considered equal, so here, unigueness refers to
the direction of the normal. A unigue normal exists only for points where the
boundary manifold is smooth (differentiable). Examples of non-smooth boundary
points are vertices and edges of polytopes. The algorithm described here does not
require the boundary manifold to be smooth, and returns an arbitrary normal for
non-smooth boundary points.

Let usmake afew observations. For n anormal and p a point on the boundary
of C, we know that al points x for whichn - (x — p) > 0 are not contained in
C. Now, let x = s + Ar be apoint of ray R. We find that the section of the ray
corresponding to

An-r>n-(p—s),

isnot contained in C', and thus cannot contain the hit spot. More specifically:

1. If n-r > 0, then the section of theray for whichA > n - (p —s)/n - r can
bergected. Thus, n - (p —s)/n - r isan upper bound for the hit spot.

2. If n-r < 0, then the section of theray for which A <n-(p —s)/n-rcan
be rejected. Thus, n - (p —s)/n - r isalower bound for the hit spot.

3. Ifn-r=0andn- (p —s) < 0 then the complete ray can be rejected.

Our strategy for computing Ay IS to iteratively clip sections of R that do not
contain the hit spot, until we arrive at the hit spot.

Let C beconvex and let x; = s+ \;r bethe current best lower bound for the hit
spot. Thus, we already have rejected the section of theray givenby 0 < \ < ;.
Now, let c; be the point of C' closest to x;, then either

1. ¢; = x;, thatis, x; iscontained in C, or
2. ¢, isonthe boundary and n; = x; — c; isanormal at c; .

In thefirst case, x; must be the hit spot and we are done. For the second case, we
will show that either the ray does not hit the object, or there exists a better |ower
bound for the hit spot than the current one. Recall that we can reject the section
of the ray defined by

An; -r >n; - (c; —s).

Although intuitively this seems obvious, aformal proof for this theorem demands some con-
sideration (See Lemma4.1in [11])

Sincen; = x; — ¢; and s = x; — A\;r thisisequivalent to

An; -t > A\m; - T — [ng]]?

First of all, if n; - r = 0, then the entire ray can be rejected since —||n;||? < 0.
Assumen; - r 7é 0 and let >\i+1 =\ — HIIZ‘H2/I'IZ' -r. Then, for n; -r > 0,we
find that \;,, isan upper bound. Since \;,; < J;, and we aready have rejected
the section up to \;, the entire ray can be rejected. For n; - r < 0, we find that
Ai+1 ISalower bound. Since \;,; > \;, we have found a better lower bound for
the hit spot. A summary of this iterative method is described in pseudo-code in
Algorithm 1.

Algorithm 1 An iterative method for performing aray cast of aray s + Ar against
aconvex object C'. For positiveresults, this algorithm terminates with A being the
hit parameter, x, the hit spot, and n, the normal at x.

A —0;

X S;

n «— 0;
c < “the point of C' closest tax” ;
while not* x is close enough te” do
begin

n<« X —C;

if n-r > 0 then return false

else
begin
A= A= [nf2/n
X «— s+ Ar;
c < “the point of C' closest tax”
end
end;

return true

The property \; < A\ii1 < Ay IS anecessary yet not sufficient condition for
global convergence. In order to show that, in case of a hit, x; indeed approaches
the hit spot for i — oo, we need to show that the mapping from A; to A\, is

continuousat al A < Ay Recall that A1 = A\; — [|n()\)]|?/n(N;) - r, where

n(A) = x(A) —c(x(}),
x(\) = s+ Ar,and
c(x) = “thepointof C closesttox”.

For convex C, the point of C' closest to x is unique for any point x, S0 c(x) isa
proper mapping. Since, in case of ahit, n(\) - r < 0 foral A < Ay, it sufficesto
show that the mapping n(\) is continuous on this domain.

First of al, it is clear that x()\) is continuous. The mapping c(x(\)) is con-
tinuous as well. The proof of this theorem may not interest the casual reader and
is postponed to Appendix A. Since the difference of two continuous functionsis
continuous as well, we conclude that n(\) is continuous.

If the ray misses C', thenn(\) - r = 0 for some)\, and thus the mapping from
A; 10 A4 is discontinuous at this \. However, since n()\) - r is monotonically
nondecreasing, as shown in Appendix A, we are assured of thefact that n(\) - r <
O0foral A < \;,aslongasn; - r < 0. So, adiscontinuity is encountered only
when n; - r > 0 in which case Algorithm 1 terminates.

We see that each iteration brings us closer to either the hit spot or a condition
for regjection. In case of a hit, the sequence {\;} converges to Ap;;. This means
that, for any positive ¢, it takes a finite number of iterations to find a point on
the ray at a distance of less than ¢ from the hit point. Note that not necessarily
Ai = Ayt fOr some i, that is, for some objects we can get arbitrarily close to, but
still may never reach the hit point. However, if C'isapolytope, then Ay isaways
reached in afinite number of iterations.

Up until now, we have been avoiding the question of how to find the point of
a general convex object closest to a given point. Our best bet for this operation
would be the Gilbert-Johnson-Keerthi algorithm (GJK) [5]. GJX is an iterative
method for computing the closest points pair of two convex objects. However,
the idea of having an iterative method nested inside another does not sound too
appealing from a performance point of view, let alone the difficulty of establishing
a termination condition for the inner GJK loop. So, instead of having nested
loops, we will combine the two iterative methods into a single iterative method in
Section 4, but first, let us briefly discuss the GJK algorithm.

3 Overview of GJK

The Gilbert-Johnson-Keerthi algorithm (GJK) is essentially a descent method for
approximating the distance between two general convex objects. The original
paper discusses the use of GJK for polytopes only [6], however, with some minor
adaptations of the termination condition, GJK is applicable to convex objects in
genera [5]. In this section we will briefly discuss the GIK algorithm in order to
get us going for the next section. For an in-depth discussion of GJK, the reader is
referred to [11].

Theversatility of GIK liesin thefact that it uses support mappings for reading
the geometry of convex objects. A support mappindor an object C' isafunction
s that maps a vector v to a point of ', according to

sc(v) € C suchthat v -sc(v) =max{v-x:x¢€ C}.

The result of a support mapping for a given vector is called a support point In
order to use GJXK for a given primitive shape type, we need to supply a support
mapping for thetype. Support mappingsfor objects obtained from primitive shape
types by affine transformation, convex hulls, and Minkowski addition can be de-
rived from the support mappings for the primitive types. A discussion of support
mappings for commonly used shape types falls outside the scope of this article.
The reader isreferred to [11] for learning more about support mappings.

An important concept in GJK is the notion of configuration spaceThe dis-
tance query on two objects is transformed to a query on a single convex object
called the configuration space obstac(€S0). The CSO of objects A and B is
the object

A-B={x—-y:x€Aye€ B}

It can be seen that the distance between A and B is equal to the distance between
A — B and 0, the origin of the configuration space. We denote the point closest to
the origin of an object C' as

v(C) e C and ||v(C)] = min{||x]| : x € C}.
It follows that the distance between A and B can be expressed as
d(A, B) = [Jv(A = B)]|.

Given support mappingsfor A and B, a support mapping s 4,_g for A — B can be
found easily, since

sa—p(v) = sa(v) — sp(—v).

7

For now, let us assume we have support mappingsfor A and B.

GJK approximates the point v(A — B) in the following way. In each iteration
a simplex is constructed that is contained in A — B and that lies closer to the
origin than the simplex constructed in the previous iteration. A simplex is the
convex hull of an affinely independent set of vertices. The simplices can have one
to four vertices, so a simplex can be a single point, aline segment, atriangle, or
a tetrahedron. We define W, as the set of vertices of the ssmplex constructed in
the k-th iteration, and v, as v(conv(W})), the point of the simplex closest to the
origin. Initially, wetake W, = (), and v, an arbitrary pointin A— B. Since A— B
isconvex and W, C A— B, weseethat v, € A— B, andthus||v,| > ||lv(A—B)]||
for al k£ > 0. So, the length of v, isan upper bound for the distance between A
and B.

In each iteration we add a new support point w, = s4_p(—vy) as vertex to
the current simplex ;.. Let Y, = W) U {w;} be the new ssimplex. We take
vi+1 = v(conv(Yy)), the point closest to the origin of the new simplex. As W4,
we take the smallest set X C Y}, such that v, iscontained in conv(X). It can
be seen that exactly one such X exists, and that it must be affinely independent.
So, while new vertices are being added to the simplex, earlier vertices, that are no
longer necessary for supporting vy 1, are discarded.

GJXK terminatesas soon as vy, isclose enoughtov(A— B). Asupper bound for
|vi,—v(A— B)||* weuse ||vi||* — vi - wy. It hasbeen shown that this upper bound
approaches zero when v, — v(A — B), and that the sequence {v, } convergesto
v(A — B) [6, 11]. Therefore, Algorithm 2, which describes the GIK distance
algorithm in pseudo-code, must terminate in afinite number of iterations for any
positive error tolerance e.

For computing the point of a simplex conv(Y") closest to the origin, and for
determining the smallest subsimplex that contains the closest point we use a sub-
algorithm called Johnson’'s distance algorithm. Let Y = {y, ...y, } bethe set of
vertices of the smplex. Then, a point v of the simplex is described as a convex
combination of Y in the following way.

i=1 i=1

The smallest X C Y suchthat v € conv(X) istheset X = {y; : \; > 0}. In
other words, the set X is found by discarding all the pointsy; from Y for which
Now, let v = v(conv(X)) and X the corresponding minimum subsimplex.

8

Algorithm 2 The GJK distance algorithm.

v « “arbitrary pointin A — B”;
W« 0;
W — Sa_p(—V);
while [|[v[[? = v-w > e*do
{ v is not close enough to(A — B). }
begin
Y —« WuU{w};
v < v(conv(Y));
W « “smallestX C Y such thatv € conv(X)";
W — s4-p(—V);
end;
return ||v||

Then, also v = v(aff(X)), i.e., the point closest to the origin of the affine hull of
X. Thepoint v(aff(.X)) can be computed by solving alinear system of equations,
since it is the unique point of the affine hull that is perpendicular to all vectors
yi —y;, Wherey;,y,; € X. Johnson’s algorithm uses a recursive formulation for
the solution of thelinear system. Let X = {y, : i € Ix},whereIx C {1,...,n}.
Then, we express v(aff (X)) as

AX
v(aff(X)) = > Ay; where X = NS
i€lx
and A is defined recursively as
AT = NTAX (i —yy) yi) forj ¢ Iy andany k € Iy,
i€lx

and finally, AX isdefined as

A =3 AF
i€lx
The smallest X C Y such that v € conv(X) can now be characterized as the
subset X for which (i) AX > 0 for each i € Iy, and (i) A"®7 < 0, for all

9

j ¢ Ix. Johnson's algorithm successively tests each nonempty subset X of Y
until it finds one for which (i) and (ii) hold.

Since some or all verticesin Y}, reappear in Yj,;, many vectorsy; — y; from
the k-th iteration are also needed in the £ + 1-th iteration. So, a sensible imple-
mentation of GJK would cache these vectors for future iterations. Further perfor-
mance gains can be obtained by caching also the values of the determinants A,
For details on how to implement caching for these valueswe refer to [11].

4 GJK-Based Ray Cast

We are now ready to combine the two iterative methods described in Algorithm 1
and 2 into asingleiterative method for performing aray cast against general con-
vex objects. Similar to GJK, the algorithm presented here uses only a support
mapping for reading the geometry of the convex object, so it is applicable to the
same family of convex objects as GJK.

In Algorithm 1, we use the normal n; = x; — c; at the point c; of C' closest
to x; for finding \;,;. This normal can be expressed in terms of configuration
spaceasn; = v({x;} — C). Generally, GIK will not return this normal in afinite
number of iterations. However, it can generate a sequence {v,} that convergesto
n;. For k > 1, the vector v, represents the point closest to the origin of asimplex
conv({x;} — P.), where P, isthe set of vertices of asimplex contained in object
C'. The pointsin P, are generated by a support mapping of C'. Let py, = s¢(vi)
be a support point of C' for vector v;.. Then, v, isanormal at p;. by the definition
of support mapping, and thus, the section of the ray corresponding to

AV T > V- (pr— 8)

can be regjected. So, although v, is not necessarily equal to n;, it may help usin
rejecting sections of theray. Let x; = s + \;r be the current best |lower bound for
the hit spot. If we substitute s = x; — A;r in the above inequality, we find

AVE T > NV - T — Vi - Wy, where Wi = S{xi},c(—vk) = X; — Pk-

Agan, if v - r = 0 and v; - w; > 0, then the entire ray can be rejected. If
vi -1 > 0,then \; — v - wy /vy - r isan upper bound for Ay;; In this case, we can
asoreect theentireray if v-wy > 0. If v - r < 0then \; — v - wy /vy - risa
lower bound. It is a better lower bound than); if v, - w;, > 0. We see that in all
three cases, progressis madeif v, - wy > 0.

10

Note that the sequence {v;} generated by GJK can have awild behavior, es-
pecialy in the first few iterations, so it is not guaranteed that v, - wy, is always
positive. However, since || v ||* — v - w, approaches zero, v - w;, must become
positive in a finite number of iterations for any normal n; # 0. So, aslong as x;
is not contained in C', we can either get closer to the hit spot or closer to a con-
dition for rejection by performing afinite number of GJK iterations. Algorithm 3
describes the GJK-based ray cast in pseudo code.

Algorithm 3 GJK-based ray cast. For positive results, this algorithm terminates
with A being the hit parameter, x, the hit spot, and n, the normal at x.

A —0;
X «— S;
n «— 0;
v « x — “arbitrary pointin C”;
P «— (;
while ||v]|? > €% do
begin
p < sc(v); { visanormal ofC atp }
W X — P;
if v..w > 0then
begin
if v-r > 0 then return false
else
begin
A= A—v-w/v-r;
X «— S+ Ar;
n—yv
end
end;
Y — PU{p}
v «— v(conv({x} — Y));
P — “smallestX C Y such thatv € conv({x} — X)”
end;
return true

Note that in contrast to the GIJK distance algorithm, the CSO {x} — C' may
change position during iterations. The CSO is translated along the vector r when-

11

ever x isupdated. Updates of the lower bound for the hit spot result in a behavior
that deviates from the normal behavior of GJK. First of al, ||v.|| is no longer
monotonically decreasing in k. Secondly, the same support point may be returned
over multipleiterations.

With the original GJK algorithm, generating the same support point twice is
theoretically impossible. Sinceit isaclear sign of numerical problemsin afinite-
precision implementation of GJK, this property can be exploited to exit gracefully
should a support point ever reappear [10]. For the GJK ray cast, we can no longer
rely on this property for signaling numerical problems. However, since the termi-
nation condition used in Algorithm 3 differsfrom the one in Algorithm 2, the sup-
port point check is no longer necessary, as we discovered in our single-precision
(32-hit) floating-point implementation of the GIK ray cast.

Overall, the numerical behavior of the GJK ray cast is pretty decent. A known
numerical issue with Johnson’s algorithm is the fact that due to rounding the signs
of the determinants AX may be incorrect. This may result in failure to find a
proper minimal subset X [6]. This problem occurs when Y is close to being
affinely dependent, which usualy happens when v, is close to v(x — C). So,
the best we can do in this situation is to simply exit the loop and return x as the
current best lower bound for the hit spot.

Another issue that needs some attention in a finite-precision implementation
is the choice of error tolerance ¢ in the termination condition. For vectors vy,
close to zero the relative error due to rounding can be quite large. We have found
that the error in the squared length of v, isroughly proportional to the maximum
squared distance between x and apoint in P,.. So, for the numerical GIK ray cast
we propose as termination condition,

IVill* < et max{fx — p[|* : p € Py},

where ¢, is an order of magnitude larger that the machine epsilon of the used
floating-point format. Choosing a tolerance ¢y, that is less than the machine ep-
silon will result in infinite looping, since the error in the computed ||v||* can
become greater than e, max{||x — p||* : p € P }.

The convergence speed depends on the used shape types. We have found the
worst convergence for smooth shapes such as spheres. For a sphere, the aver-
age number of iterations is roughly proportional to —log(s¢.;). For instance, an
£o1 Of 1079 results in eight iterations on average for random rays with a high hit
probability. Polytopes usually take fewer iterations.

In the application of ray casting in continuous collision detection, the ray has
afinite length. This feature can be exploited to improve the performance of the

12

ray cast. Assoon as the lower bound)\ becomes larger than the given maximum
parameter ..., Algorithm 3 may terminate returning a miss. By enabling an
early out for finite rays, the average number of iterations drops dramatically in
cases where the query rays are short with respect to the environment.

The possible trand ations of the CSO also impair the caching scheme for John-
son’sagorithm we mentioned in Section 3. However, things are not as bad as they
seem. A tranglation of the CSO does not affect the values of the cached vector dif-
ferences y;,, — y,, since both y, and y; are translated over the same vector. The
cached values of the determinants A:X are affected by a translation of the CSO.
S0, each time x is updated, we must recompute the determinants.

For collision detection, the performance of GJK can be boosted by allowing
an early out as soon as v, becomes a separating axis [10]. Frame coherence can
be exploited, by caching this axis and using it as initia v, in the next frame.
A similar scheme can be used for the GJK ray cast. In case of a miss, v, isa
separating axis of theray R and the object C'. If the configuration of R and C' does
not change alot over time, then this separating axisislikely to be a separating axis
in the next frame as well. By initializing v, with a previously returned separating
axis, the number of iterations per frame can be reduced considerably. Note that
since this vy may no longer be contained in x, — C, it is necessary to skip the
termination test for the first iteration. Overal, the GJK ray cast implemented
using this caching scheme is only slightly more expensive than the incremental
separating axis variant of GJK.

5 Conclusion

We have presented an iterative method for performing ray casts against general
convex objects, and have succeeded in attaining our main objective: to find an
algorithm for performing a simplified form of continuous collision detection on
convex objects in real-time. Moreover, due to its high performance and versa-
tility, we expect this agorithm to have applications in other areas as well. An
obvious application areais ray tracing. The use of support mappings for reading
geometry offers new methods for representing shapes in ray-traced environments,
and removes the need for representing compound convex shapes with polygonal
surfaces.

13

Acknowledgments

Thanks Willem de Boer for being an excellent sounding board and proof reader.

A Theorems

Lemma 1. Let C be a convex object, and, and x, arbitrary points. Further-
more, letc; andc, be the points of” closest to respectively; andx,. Then,

(x2 —x1) - (€2 — €1) = [lea — ¢
Proof. We derive
(x2 —x1) - (€2 — ¢1)

(XQ_CQ+C2_C1+C1_X1)'(C2_C1)

= (x2—C3)-(ca—c1) + [l —e1||* + (x1 —¢1) - (€1 —).

Since C'isconvex and x; — ¢, iseither anormal at c; or equal to 0, we know that
(xy —c1)-(c; —y)>0foranyy € C. Inparticular, (x; —c;) - (¢c; —cy) > 0.
In the same way, we deduce that (xs — c3) - (c2 — ¢1) > 0, and thus, that

(x2 —%1) - (€2 —€1) > [lea — e *.
[l

Theorem 2. Let C' be a convex object, anl = {s + Ar : A > 0} aray. Then,
the mapping fromk to the point ofC' closest tax(\) = s + Ar is continuous.

Proof. We proof continuity of the closest point mapping in usual way by showing
that for each ¢ > 0, we can find ad > 0 such that for al Ay, A, for which |y —
A1] < 9, the distance between the respective closest points of x(A;) and x()2) is
lessthan e.

Lete > 0, A\;, Ay > 0, and c; and ¢, the points of C' closest to respectively
x; = x(A1) and x; = x(A2). From Lemma 1, we know that

(x2 —x1) - (€2 —€1) > [Jez — 1%
We substitutex; = s + \r and x5, = s + A\or and find

(A2 = A)r - (e — 1) > [lez — e

14

Observethat r - (co — ¢1) iszero only if ¢; = c,, SO this case can not result in a
discontinuity. Assumer-(cs—c;) # 0. Sincetheright-hand side of theinequality
IS non-negative, we can rewrite the equation above as as

ey —01H2

Mo —N\|>— —
Ao =Ml 2 e e

Then, we see that for

62

v (c2 —cy)|

the distance between ¢; and ¢, must be less than . O

|Ae — M| <

Theorem 3. LetC' be a convex object, and let = s + \;r andx, = s + Aqor for
0 < A1 < Aq. Furthermore, let; andc; be the points of”' closest to respectively
x; andx,. Then,

(x1 —c¢1)-r<(x2—cy)-r.

Proof. We derive

(xg —x1) -1
(Xg—Cg‘l—CQ—Cl‘l—Cl—Xl)'I’
= (Xg—cCy)-r+(ca—cy)-r—(x3—cg)-r.
Thus, if we can show that (x2 — x;) -r — (co —¢1) -r > 0, then (x; —¢;) - r
cannot be greater than (x; — ¢5) - r, and we are done. First of all, since A} < A,

we see that
(x2 —x1) - = (A — Ap)[Jr[|* = [|x2 — xq |||

According to Cauchy’s inequality we have
(c2 —c1) -1 < [lea — e [|rf].
Thus,
(x2 =x1) - r — (€2 —¢1) -1 > [|xo = xu[[[r]] = [lez — eq[]x]].
Remains to be shown that ||x; — x;|| > ||ca — ¢;]|. It followsfrom Lemma 1 that

(x2 —%1) - (€2 —€1) > [lea — e |”.

15

From Cauchy’sinequality we know that (x, —x1)-(ca—c1) < ||[xo—x%1|||[ca—ci]|,
thus
Ix2 = x|z — il > [lea — e,

This can be simplified to

%2 — x1|| > [|ez — 4.

References

[1] S. Cameron. A study of the clash detection problem in robotics. In Proc.
IEEE Int. Conf. on Robotics and Automatjqmages 488493, 1985.

[2] S. Cameron. Collision detection by four-dimensional intersection testing.
IEEE Transactions on Robotics and Automatie8):291-302, 1990.

[3] J. Canny. Collision detection for moving polyhedra. IEEE Transactions on
Pattern Analysis and Machine Intelligend@\MI-8(2):200-209, 1986.

[4] J. Eckstein and E. Schomer. Dynamic collision detection in virtual reality
applications. In Proc. 7th International Conference in Central Europe on
Computer Graphics and Visualization and Interactive Digital Media, WSCG
'99, pages 71-78, 1999.

[5] E. G. Gilbert and C.-P. Foo. Computing the distance between genera con-
vex objectsin three-dimensional space. IEEE Transactions on Robotics and
Automation6(1):53-61, 1990.

[6] E.G.Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure for comput-
ing the distance between complex objects in three-dimensional space. IEEE
Journal of Robotics and Automatipf(2):193-203, 1988.

[7] P.M. Hubbard. Space-time boundsfor collision detection. Technical Report
CS-93-04, Dept. of Computer Science, Brown University, Feb. 1993.

[8] S.Redon, A. Kheddar, and S. Coquillart. Fast continuous collision detection
between rigid bodies. In Proc. EUROGRAPHICS 2002002.

16

[9] E. Schomer and C. Thiel. Efficient collision detection for moving polyhedra.
In Proc. 11th Annual ACM Symposium on Computational Geomgedges
51-60, 1995.

[10] G. van den Bergen. A fast and robust GJK implementation for collision
detection of convex objects. Journal of Graphics Toolg}(2):7-25, 1999.

[11] G. van den Bergen. Collision Detection in Interactive 3D Environments
Morgan Kaufmann, San Francisco, CA, 2003.

17

