
Ray Casting against General Convex Objects
with Application to Continuous Collision

Detection

GINO VAN DEN BERGEN

Playlogic Game Factory
Breda, Netherlands

gino@acm.org

June 15, 2004

Abstract

This paper presents a new algorithm for computing the hit point and nor-
mal of a ray and a general convex object. The algorithm is loosely based on
the the Gilbert-Johnson-Keerthi algorithm for computing the distance be-
tween convex objects in the sense that it is applicable to the same family
of convex objects and uses the same subalgorithm for computing the clos-
est point of a simplex. Since this family of convex objects includes objects
constructed by Minkowski addition, this algorithm can be used for finding
the earliest time two objects that move at a constant linear velocity come in
contact of one another. In this way, this ray-casting algorithm is applicable
to a simplified form of continuous collision detection.

1 Introduction

The Gilbert-Johnson-Keerthi distance algorithm (GJK) is an iterative method for
computing the distance between convex objects [6]. The attractiveness of GJK lies
in its simplicity, which makes it fairly easy to implement, and its applicability to
a large family of convex objects. This family of convex objects includes common
shape primitives, such as spheres, boxes, and cylinders, as well as convex hulls

1

and Minkowski sums of convex objects. GJK is used extensively in collision
detection [11]; however, up until now, it has been used mostly for static collision
tests at discretely sampled time steps.

A problem that occurs when performing collision detection in this way is that
collisions of fast moving objects, such as bullets fired from a gun, may be de-
tected too late or not at all. This temporal-aliasing effect can be reduced by taking
smaller time steps, however, the added computational cost of running your simu-
lations at a higher frequency is often too high to make such an approach feasible.

This suggests that for fast moving objects we need to solve the collision detec-
tion problem as an intersection test in continuous four-dimensional space (space-
time). The object placements in between two sampled instances of time are not
known but can be obtained by interpolating the sampled placements. The four-
dimensional objects that we test for intersection are the result of extruding the
three-dimensional objects along their interpolated placements over the time inter-
val. Solutions to the four-dimensional intersection detection problem have been
presented for a restricted class of objects and motions [1, 2, 3, 7, 9, 4, 8]. How-
ever, in many common cases, the four-dimensional object that is the extrusion of
a three-dimensional object in motion is often geometrically too complex to make
a four-dimensional intersection test at interactive rates computationally feasible.
For instance, it is hard to test the space-time extrusion of a spinning object, such as
a propellor or a fan, for intersection with the extrusion of another moving object.

Often, we can get away with the following simplified four-dimensional in-
tersection test. When the angular velocity of the moving objects is low, that is,
orientations do not change a lot in-between frames, then a good approximation
of the trajectory of such objects can be obtained by changing the orientations in-
stantaneous at fixed time steps. Thus we only interpolate the positions of the
objects in-between frames. For such trajectories, the time of collision, the point
of contact, and a contact normal can be computed by performing a ray cast on the
configuration space obstacle(CSO) of the objects. The CSO of two objects A and
B is the set of all vector differences of a point in A and a point in B. The con-
tact point corresponds to the point where the ray enters the CSO, and the contact
normal is the normal to the boundary of the CSO at this point. Figure 1 shows an
example of the ray test for a box and a moving sphere.

For many pairs of shape types, the CSO’s shape can not be represented explic-
itly in a simple way. However, the ray cast algorithm we propose in this paper
does not require an explicit representation of the CSO. As GJK, it uses a support
mapping to read the geometry of the object, and is therefore applicable to the same
family of objects.

2

t = 1

t = 0B

B

t = 0

t = 1

A A − B

Figure 1: Computing a contact point (open dot) and contact normal (arrow) of box
and a moving sphere by performing a ray test on the CSO of the objects.

The rest of this paper is organized as follows. In Section 2, we present a first
iterative method for performing ray casts on general convex objects. This algo-
rithm is an initial step towards the GJK-based ray cast presented in Section 4. The
first method has little practical value. Its main purpose is to explain the concepts
and help us prove certain properties of the GJK-based method. Since the latter
method relies heavily on concepts used in GJK, we present an overview of the
GJK algorithm in Section 3.

2 A First Solution

Let for a point s and vector r, the ray R be given by

R = {s + λr : λ ≥ 0}.

The points s is the source, and the vector r is the directionof the ray. A ray cast
of R onto an object C is a query that returns the smallest λ ≥ 0 for which the
point x = s + λr is contained in C. This parameter is denoted by λhit, and the
corresponding point x is called the hit spot. If the source is not contained in C,
thus λhit > 0, then the hit spot must be a point on the boundary of C. In that case,
we can define a normal at the hit point.

A non-zero vector n is a normalat a point p on the boundary of object C if

n · (x − p) ≤ 0, for all x ∈ C.

3

A normal exists for all points on the boundary as long as C is convex. For a given
point p on the boundary, a normal at p may not necessarily be unique. Normals
that differ only in magnitude are considered equal, so here, uniqueness refers to
the direction of the normal. A unique normal exists only for points where the
boundary manifold is smooth (differentiable). Examples of non-smooth boundary
points are vertices and edges of polytopes. The algorithm described here does not
require the boundary manifold to be smooth, and returns an arbitrary normal for
non-smooth boundary points.

Let us make a few observations. For n a normal and p a point on the boundary
of C, we know that all points x for which n · (x − p) > 0 are not contained in
C. Now, let x = s + λr be a point of ray R. We find that the section of the ray
corresponding to

λn · r > n · (p − s),

is not contained in C, and thus cannot contain the hit spot. More specifically:

1. If n · r > 0, then the section of the ray for which λ > n · (p − s)/n · r can
be rejected. Thus, n · (p− s)/n · r is an upper bound for the hit spot.

2. If n · r < 0, then the section of the ray for which λ < n · (p − s)/n · r can
be rejected. Thus, n · (p− s)/n · r is a lower bound for the hit spot.

3. If n · r = 0 and n · (p− s) < 0 then the complete ray can be rejected.

Our strategy for computing λhit is to iteratively clip sections of R that do not
contain the hit spot, until we arrive at the hit spot.

Let C be convex and let xi = s+λir be the current best lower bound for the hit
spot. Thus, we already have rejected the section of the ray given by 0 ≤ λ < λi.
Now, let ci be the point of C closest to xi, then either

1. ci = xi, that is, xi is contained in C, or

2. ci is on the boundary and ni = xi − ci is a normal at ci
1.

In the first case, xi must be the hit spot and we are done. For the second case, we
will show that either the ray does not hit the object, or there exists a better lower
bound for the hit spot than the current one. Recall that we can reject the section
of the ray defined by

λni · r > ni · (ci − s).

1Although intuitively this seems obvious, a formal proof for this theorem demands some con-
sideration (See Lemma 4.1 in [11])

4

Since ni = xi − ci and s = xi − λir this is equivalent to

λni · r > λini · r − ‖ni‖2.

First of all, if ni · r = 0, then the entire ray can be rejected since −‖ni‖2 < 0.
Assume ni · r �= 0 and let λi+1 = λi − ‖ni‖2/ni · r. Then, for ni · r > 0, we
find that λi+1 is an upper bound. Since λi+1 < λi, and we already have rejected
the section up to λi, the entire ray can be rejected. For ni · r < 0, we find that
λi+1 is a lower bound. Since λi+1 > λi, we have found a better lower bound for
the hit spot. A summary of this iterative method is described in pseudo-code in
Algorithm 1.

Algorithm 1 An iterative method for performing a ray cast of a ray s+λr against
a convex object C. For positive results, this algorithm terminates with λ being the
hit parameter, x, the hit spot, and n, the normal at x.

λ ← 0;
x ← s;
n ← 0;
c ← “the point ofC closest tox” ;
while not “ x is close enough toc” do
begin

n ← x − c;
if n · r ≥ 0 then return false
else
begin

λ ← λ − ‖n‖2/n · r;
x ← s + λr;
c ← “the point ofC closest tox”

end
end;
return true

The property λi < λi+1 ≤ λhit is a necessary yet not sufficient condition for
global convergence. In order to show that, in case of a hit, xi indeed approaches
the hit spot for i → ∞, we need to show that the mapping from λi to λi+1 is

5

continuous at all λ < λhit. Recall that λi+1 = λi − ‖n(λi)‖2/n(λi) · r, where

n(λ) = x(λ) − c(x(λ)),

x(λ) = s + λr, and

c(x) = “the point of C closest to x”.

For convex C, the point of C closest to x is unique for any point x, so c(x) is a
proper mapping. Since, in case of a hit, n(λ) · r < 0 for all λ < λhit, it suffices to
show that the mapping n(λ) is continuous on this domain.

First of all, it is clear that x(λ) is continuous. The mapping c(x(λ)) is con-
tinuous as well. The proof of this theorem may not interest the casual reader and
is postponed to Appendix A. Since the difference of two continuous functions is
continuous as well, we conclude that n(λ) is continuous.

If the ray misses C, then n(λ) · r = 0 for some λ, and thus the mapping from
λi to λi+1 is discontinuous at this λ. However, since n(λ) · r is monotonically
nondecreasing, as shown in Appendix A, we are assured of the fact that n(λ) ·r <
0 for all λ ≤ λi, as long as ni · r < 0. So, a discontinuity is encountered only
when ni · r ≥ 0 in which case Algorithm 1 terminates.

We see that each iteration brings us closer to either the hit spot or a condition
for rejection. In case of a hit, the sequence {λi} converges to λhit. This means
that, for any positive ε, it takes a finite number of iterations to find a point on
the ray at a distance of less than ε from the hit point. Note that not necessarily
λi = λhit for some i, that is, for some objects we can get arbitrarily close to, but
still may never reach the hit point. However, if C is a polytope, then λhit is always
reached in a finite number of iterations.

Up until now, we have been avoiding the question of how to find the point of
a general convex object closest to a given point. Our best bet for this operation
would be the Gilbert-Johnson-Keerthi algorithm (GJK) [5]. GJK is an iterative
method for computing the closest points pair of two convex objects. However,
the idea of having an iterative method nested inside another does not sound too
appealing from a performance point of view, let alone the difficulty of establishing
a termination condition for the inner GJK loop. So, instead of having nested
loops, we will combine the two iterative methods into a single iterative method in
Section 4, but first, let us briefly discuss the GJK algorithm.

6

3 Overview of GJK

The Gilbert-Johnson-Keerthi algorithm (GJK) is essentially a descent method for
approximating the distance between two general convex objects. The original
paper discusses the use of GJK for polytopes only [6], however, with some minor
adaptations of the termination condition, GJK is applicable to convex objects in
general [5]. In this section we will briefly discuss the GJK algorithm in order to
get us going for the next section. For an in-depth discussion of GJK, the reader is
referred to [11].

The versatility of GJK lies in the fact that it uses support mappings for reading
the geometry of convex objects. A support mappingfor an object C is a function
sC that maps a vector v to a point of C, according to

sC(v) ∈ C such that v · sC(v) = max{v · x : x ∈ C}.

The result of a support mapping for a given vector is called a support point. In
order to use GJK for a given primitive shape type, we need to supply a support
mapping for the type. Support mappings for objects obtained from primitive shape
types by affine transformation, convex hulls, and Minkowski addition can be de-
rived from the support mappings for the primitive types. A discussion of support
mappings for commonly used shape types falls outside the scope of this article.
The reader is referred to [11] for learning more about support mappings.

An important concept in GJK is the notion of configuration space. The dis-
tance query on two objects is transformed to a query on a single convex object
called the configuration space obstacle(CSO). The CSO of objects A and B is
the object

A − B = {x − y : x ∈ A,y ∈ B}.

It can be seen that the distance between A and B is equal to the distance between
A−B and 0, the origin of the configuration space. We denote the point closest to
the origin of an object C as

v(C) ∈ C and ‖v(C)‖ = min{‖x‖ : x ∈ C}.

It follows that the distance between A and B can be expressed as

d(A, B) = ‖v(A − B)‖.

Given support mappings for A and B, a support mapping sA−B for A − B can be
found easily, since

sA−B(v) = sA(v) − sB(−v).

7

For now, let us assume we have support mappings for A and B.
GJK approximates the point v(A − B) in the following way. In each iteration

a simplex is constructed that is contained in A − B and that lies closer to the
origin than the simplex constructed in the previous iteration. A simplex is the
convex hull of an affinely independent set of vertices. The simplices can have one
to four vertices, so a simplex can be a single point, a line segment, a triangle, or
a tetrahedron. We define Wk as the set of vertices of the simplex constructed in
the k-th iteration, and vk as v(conv(Wk)), the point of the simplex closest to the
origin. Initially, we take W0 = ∅, and v0, an arbitrary point in A−B. Since A−B
is convex and Wk ⊆ A−B, we see that vk ∈ A−B, and thus ‖vk‖ ≥ ‖v(A−B)‖
for all k ≥ 0. So, the length of vk is an upper bound for the distance between A
and B.

In each iteration we add a new support point wk = sA−B(−vk) as vertex to
the current simplex Wk. Let Yk = Wk ∪ {wk} be the new simplex. We take
vk+1 = v(conv(Yk)), the point closest to the origin of the new simplex. As Wk+1,
we take the smallest set X ⊆ Yk, such that vk+1 is contained in conv(X). It can
be seen that exactly one such X exists, and that it must be affinely independent.
So, while new vertices are being added to the simplex, earlier vertices, that are no
longer necessary for supporting vk+1, are discarded.

GJK terminates as soon as vk is close enough to v(A−B). As upper bound for
‖vk−v(A−B)‖2 we use ‖vk‖2−vk ·wk. It has been shown that this upper bound
approaches zero when vk → v(A − B), and that the sequence {vk} converges to
v(A − B) [6, 11]. Therefore, Algorithm 2, which describes the GJK distance
algorithm in pseudo-code, must terminate in a finite number of iterations for any
positive error tolerance ε.

For computing the point of a simplex conv(Y) closest to the origin, and for
determining the smallest subsimplex that contains the closest point we use a sub-
algorithm called Johnson’s distance algorithm. Let Y = {y1, . . .yn} be the set of
vertices of the simplex. Then, a point v of the simplex is described as a convex
combination of Y in the following way.

v =

n∑

i=1

λiyi where
n∑

i=1

λi = 1 and λi ≥ 0.

The smallest X ⊆ Y such that v ∈ conv(X) is the set X = {yi : λi > 0}. In
other words, the set X is found by discarding all the points yi from Y for which
λi = 0.

Now, let v = v(conv(X)) and X the corresponding minimum subsimplex.

8

Algorithm 2 The GJK distance algorithm.

v ← “arbitrary point in A − B” ;
W ← ∅;
w ← sA−B(−v);
while ‖v‖2 − v ·w > ε2 do
{{ v is not close enough tov(A − B). }}
begin

Y ← W ∪ {w};
v ← v(conv(Y));
W ← “smallestX ⊆ Y such thatv ∈ conv(X)” ;
w ← sA−B(−v);

end;
return ‖v‖

Then, also v = v(aff(X)), i.e., the point closest to the origin of the affine hull of
X . The point v(aff(X)) can be computed by solving a linear system of equations,
since it is the unique point of the affine hull that is perpendicular to all vectors
yi − yj , where yi,yj ∈ X . Johnson’s algorithm uses a recursive formulation for
the solution of the linear system. Let X = {yi : i ∈ IX}, where IX ⊆ {1, . . . , n}.
Then, we express v(aff(X)) as

v(aff(X)) =
∑

i∈IX

λiyi where λi =
∆X

i

∆X
,

and ∆X
i is defined recursively as

∆
{yi}
i = 1

∆
X∪{yj}
j =

∑

i∈IX

∆X
i ((yk − yj) · yi) for j �∈ IX and any k ∈ IX ,

and finally, ∆X is defined as

∆X =
∑

i∈IX

∆X
i .

The smallest X ⊆ Y such that v ∈ conv(X) can now be characterized as the
subset X for which (i) ∆X

i > 0 for each i ∈ IX , and (ii) ∆
X∪{yj}
j ≤ 0, for all

9

j �∈ IX . Johnson’s algorithm successively tests each nonempty subset X of Y
until it finds one for which (i) and (ii) hold.

Since some or all vertices in Yk reappear in Yk+1, many vectors yk − yj from
the k-th iteration are also needed in the k + 1-th iteration. So, a sensible imple-
mentation of GJK would cache these vectors for future iterations. Further perfor-
mance gains can be obtained by caching also the values of the determinants ∆X

i .
For details on how to implement caching for these values we refer to [11].

4 GJK-Based Ray Cast

We are now ready to combine the two iterative methods described in Algorithm 1
and 2 into a single iterative method for performing a ray cast against general con-
vex objects. Similar to GJK, the algorithm presented here uses only a support
mapping for reading the geometry of the convex object, so it is applicable to the
same family of convex objects as GJK.

In Algorithm 1, we use the normal ni = xi − ci at the point ci of C closest
to xi for finding λi+1. This normal can be expressed in terms of configuration
space as ni = v({xi} − C). Generally, GJK will not return this normal in a finite
number of iterations. However, it can generate a sequence {vk} that converges to
ni. For k ≥ 1, the vector vk represents the point closest to the origin of a simplex
conv({xi} − Pk), where Pk is the set of vertices of a simplex contained in object
C. The points in Pk are generated by a support mapping of C. Let pk = sC(vk)
be a support point of C for vector vk. Then, vk is a normal at pk by the definition
of support mapping, and thus, the section of the ray corresponding to

λvk · r > vk · (pk − s)

can be rejected. So, although vk is not necessarily equal to ni, it may help us in
rejecting sections of the ray. Let xi = s + λir be the current best lower bound for
the hit spot. If we substitute s = xi − λir in the above inequality, we find

λvk · r > λivk · r − vk · wk, where wk = s{xi}−C(−vk) = xi − pk.

Again, if vk · r = 0 and vk · wk > 0, then the entire ray can be rejected. If
vk · r > 0, then λi − vk ·wk/vk · r is an upper bound for λhit In this case, we can
also reject the entire ray if v · wk > 0. If vk · r < 0 then λi − vk · wk/vk · r is a
lower bound. It is a better lower bound than λi if vk · wk > 0. We see that in all
three cases, progress is made if vk · wk > 0.

10

Note that the sequence {vk} generated by GJK can have a wild behavior, es-
pecially in the first few iterations, so it is not guaranteed that vk · wk is always
positive. However, since ‖vk‖2 − vk · wk approaches zero, vk · wk must become
positive in a finite number of iterations for any normal ni �= 0. So, as long as xi

is not contained in C, we can either get closer to the hit spot or closer to a con-
dition for rejection by performing a finite number of GJK iterations. Algorithm 3
describes the GJK-based ray cast in pseudo code.

Algorithm 3 GJK-based ray cast. For positive results, this algorithm terminates
with λ being the hit parameter, x, the hit spot, and n, the normal at x.

λ ← 0;
x ← s;
n ← 0;
v ← x − “arbitrary point in C” ;
P ← ∅;
while ‖v‖2 > ε2 do
begin

p ← sC(v); {{ v is a normal ofC at p }}
w ← x − p;
if v ·w > 0 then
begin

if v · r ≥ 0 then return false
else
begin

λ ← λ − v · w/v · r;
x ← s + λr;
n ← v

end
end;
Y ← P ∪ {p};
v ← v(conv({x} − Y));
P ← “smallestX ⊆ Y such thatv ∈ conv({x} − X)”

end;
return true

Note that in contrast to the GJK distance algorithm, the CSO {x} − C may
change position during iterations. The CSO is translated along the vector r when-

11

ever x is updated. Updates of the lower bound for the hit spot result in a behavior
that deviates from the normal behavior of GJK. First of all, ‖vk‖ is no longer
monotonically decreasing in k. Secondly, the same support point may be returned
over multiple iterations.

With the original GJK algorithm, generating the same support point twice is
theoretically impossible. Since it is a clear sign of numerical problems in a finite-
precision implementation of GJK, this property can be exploited to exit gracefully
should a support point ever reappear [10]. For the GJK ray cast, we can no longer
rely on this property for signaling numerical problems. However, since the termi-
nation condition used in Algorithm 3 differs from the one in Algorithm 2, the sup-
port point check is no longer necessary, as we discovered in our single-precision
(32-bit) floating-point implementation of the GJK ray cast.

Overall, the numerical behavior of the GJK ray cast is pretty decent. A known
numerical issue with Johnson’s algorithm is the fact that due to rounding the signs
of the determinants ∆X

i may be incorrect. This may result in failure to find a
proper minimal subset X [6]. This problem occurs when Y is close to being
affinely dependent, which usually happens when vk is close to v(x − C). So,
the best we can do in this situation is to simply exit the loop and return x as the
current best lower bound for the hit spot.

Another issue that needs some attention in a finite-precision implementation
is the choice of error tolerance ε in the termination condition. For vectors vk

close to zero the relative error due to rounding can be quite large. We have found
that the error in the squared length of vk is roughly proportional to the maximum
squared distance between x and a point in Pk. So, for the numerical GJK ray cast
we propose as termination condition,

‖vk‖2 ≤ εtol max{‖x − p‖2 : p ∈ Pk},

where εtol is an order of magnitude larger that the machine epsilon of the used
floating-point format. Choosing a tolerance εtol that is less than the machine ep-
silon will result in infinite looping, since the error in the computed ‖vk‖2 can
become greater than εtol max{‖x − p‖2 : p ∈ Pk}.

The convergence speed depends on the used shape types. We have found the
worst convergence for smooth shapes such as spheres. For a sphere, the aver-
age number of iterations is roughly proportional to −log(εtol). For instance, an
εtol of 10−6 results in eight iterations on average for random rays with a high hit
probability. Polytopes usually take fewer iterations.

In the application of ray casting in continuous collision detection, the ray has
a finite length. This feature can be exploited to improve the performance of the

12

ray cast. As soon as the lower bound λ becomes larger than the given maximum
parameter λmax, Algorithm 3 may terminate returning a miss. By enabling an
early out for finite rays, the average number of iterations drops dramatically in
cases where the query rays are short with respect to the environment.

The possible translations of the CSO also impair the caching scheme for John-
son’s algorithm we mentioned in Section 3. However, things are not as bad as they
seem. A translation of the CSO does not affect the values of the cached vector dif-
ferences yk − yj, since both yk and yj are translated over the same vector. The
cached values of the determinants ∆X

i are affected by a translation of the CSO.
So, each time x is updated, we must recompute the determinants.

For collision detection, the performance of GJK can be boosted by allowing
an early out as soon as vk becomes a separating axis [10]. Frame coherence can
be exploited, by caching this axis and using it as initial v0 in the next frame.
A similar scheme can be used for the GJK ray cast. In case of a miss, vk is a
separating axis of the ray R and the object C. If the configuration of R and C does
not change a lot over time, then this separating axis is likely to be a separating axis
in the next frame as well. By initializing v0 with a previously returned separating
axis, the number of iterations per frame can be reduced considerably. Note that
since this v0 may no longer be contained in x0 − C, it is necessary to skip the
termination test for the first iteration. Overall, the GJK ray cast implemented
using this caching scheme is only slightly more expensive than the incremental
separating axis variant of GJK.

5 Conclusion

We have presented an iterative method for performing ray casts against general
convex objects, and have succeeded in attaining our main objective: to find an
algorithm for performing a simplified form of continuous collision detection on
convex objects in real-time. Moreover, due to its high performance and versa-
tility, we expect this algorithm to have applications in other areas as well. An
obvious application area is ray tracing. The use of support mappings for reading
geometry offers new methods for representing shapes in ray-traced environments,
and removes the need for representing compound convex shapes with polygonal
surfaces.

13

Acknowledgments

Thanks Willem de Boer for being an excellent sounding board and proof reader.

A Theorems

Lemma 1. Let C be a convex object, andx1 andx2 arbitrary points. Further-
more, letc1 andc2 be the points ofC closest to respectivelyx1 andx2. Then,

(x2 − x1) · (c2 − c1) ≥ ‖c2 − c1‖2.

Proof. We derive

(x2 − x1) · (c2 − c1)

= (x2 − c2 + c2 − c1 + c1 − x1) · (c2 − c1)

= (x2 − c2) · (c2 − c1) + ‖c2 − c1‖2 + (x1 − c1) · (c1 − c2).

Since C is convex and x1 − c1 is either a normal at c1 or equal to 0, we know that
(x1 − c1) · (c1 − y) ≥ 0 for any y ∈ C. In particular, (x1 − c1) · (c1 − c2) ≥ 0.
In the same way, we deduce that (x2 − c2) · (c2 − c1) ≥ 0, and thus, that

(x2 − x1) · (c2 − c1) ≥ ‖c2 − c1‖2.

Theorem 2. Let C be a convex object, andR = {s + λr : λ ≥ 0} a ray. Then,
the mapping fromλ to the point ofC closest tox(λ) = s + λr is continuous.

Proof. We proof continuity of the closest point mapping in usual way by showing
that for each ε > 0, we can find a δ > 0 such that for all λ1, λ2 for which |λ2 −
λ1| < δ, the distance between the respective closest points of x(λ1) and x(λ2) is
less than ε.

Let ε > 0, λ1, λ2 ≥ 0, and c1 and c2 the points of C closest to respectively
x1 = x(λ1) and x2 = x(λ2). From Lemma 1, we know that

(x2 − x1) · (c2 − c1) ≥ ‖c2 − c1‖2.

We substitute x1 = s + λ1r and x2 = s + λ2r and find

(λ2 − λ1)r · (c2 − c1) ≥ ‖c2 − c1‖2.

14

Observe that r · (c2 − c1) is zero only if c1 = c2, so this case can not result in a
discontinuity. Assume r ·(c2−c1) �= 0. Since the right-hand side of the inequality
is non-negative, we can rewrite the equation above as as

|λ2 − λ1| ≥ ‖c2 − c1‖2

|r · (c2 − c1)| .

Then, we see that for

|λ2 − λ1| <
ε2

|r · (c2 − c1)|
the distance between c1 and c2 must be less than ε.

Theorem 3. LetC be a convex object, and letx1 = s + λ1r andx2 = s + λ2r for
0 ≤ λ1 < λ2. Furthermore, letc1 andc2 be the points ofC closest to respectively
x1 andx2. Then,

(x1 − c1) · r ≤ (x2 − c2) · r.

Proof. We derive

(x2 − x1) · r
= (x2 − c2 + c2 − c1 + c1 − x1) · r
= (x2 − c2) · r + (c2 − c1) · r− (x1 − c1) · r.

Thus, if we can show that (x2 − x1) · r − (c2 − c1) · r ≥ 0, then (x1 − c1) · r
cannot be greater than (x2 − c2) · r, and we are done. First of all, since λ1 < λ2

we see that
(x2 − x1) · r = (λ2 − λ1)‖r‖2 = ‖x2 − x1‖‖r‖.

According to Cauchy’s inequality we have

(c2 − c1) · r ≤ ‖c2 − c1‖‖r‖.

Thus,

(x2 − x1) · r − (c2 − c1) · r ≥ ‖x2 − x1‖‖r‖ − ‖c2 − c1‖‖r‖.

Remains to be shown that ‖x2 − x1‖ ≥ ‖c2 − c1‖. It follows from Lemma 1 that

(x2 − x1) · (c2 − c1) ≥ ‖c2 − c1‖2.

15

From Cauchy’s inequality we know that (x2−x1)·(c2−c1) ≤ ‖x2−x1‖‖c2−c1‖,
thus

‖x2 − x1‖‖c2 − c1‖ ≥ ‖c2 − c1‖2.

This can be simplified to

‖x2 − x1‖ ≥ ‖c2 − c1‖.

References

[1] S. Cameron. A study of the clash detection problem in robotics. In Proc.
IEEE Int. Conf. on Robotics and Automation, pages 488–493, 1985.

[2] S. Cameron. Collision detection by four-dimensional intersection testing.
IEEE Transactions on Robotics and Automation, 6(3):291–302, 1990.

[3] J. Canny. Collision detection for moving polyhedra. IEEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI-8(2):200–209, 1986.

[4] J. Eckstein and E. Schömer. Dynamic collision detection in virtual reality
applications. In Proc. 7th International Conference in Central Europe on
Computer Graphics and Visualization and Interactive Digital Media, WSCG
’99, pages 71–78, 1999.

[5] E. G. Gilbert and C.-P. Foo. Computing the distance between general con-
vex objects in three-dimensional space. IEEE Transactions on Robotics and
Automation, 6(1):53–61, 1990.

[6] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure for comput-
ing the distance between complex objects in three-dimensional space. IEEE
Journal of Robotics and Automation, 4(2):193–203, 1988.

[7] P. M. Hubbard. Space-time bounds for collision detection. Technical Report
CS-93-04, Dept. of Computer Science, Brown University, Feb. 1993.

[8] S. Redon, A. Kheddar, and S. Coquillart. Fast continuous collision detection
between rigid bodies. In Proc. EUROGRAPHICS 2002, 2002.

16

[9] E. Schömer and C. Thiel. Efficient collision detection for moving polyhedra.
In Proc. 11th Annual ACM Symposium on Computational Geometry, pages
51–60, 1995.

[10] G. van den Bergen. A fast and robust GJK implementation for collision
detection of convex objects. Journal of Graphics Tools, 4(2):7–25, 1999.

[11] G. van den Bergen. Collision Detection in Interactive 3D Environments.
Morgan Kaufmann, San Francisco, CA, 2003.

17

